The Avtron Model HS45 is a heavy duty incremental encoder (also known as tachometer or rotary pulse generator). Its output is directly proportional to shaft position (pulse count) or speed (pulse rate). The HS45 operates down to zero speed and can be used for both control and instrumentation applications.

CAUTION

Do not utilize HS45 in hazardous locations which require ATEX, UL, CUL, CSA, or other explosion protection certification. HS45 is not certified for hazardous locations. Use XR models for hazardous applications.

When mounted to a machine shaft, the HS45 design eliminates the need for shaft couplings, adapter flanges, or accessory mounting faces. The high clamping-force collar holds the HS45 in place, even under severe vibration & shock. A high-performance composite shaft insert provides electrical isolation from motor shaft currents. The shaft insert permits models to fit a range of shaft sizes from 5/8" to 1 1/8" [16mm - 30mm]; additional sizes available upon request. An anti-rotation arm prevents housing rotation while allowing for shaft end float.

The HS45 utilizes magnetoresistive sensors. This proven technology is ideal for rugged environments since it is immune to many contaminants that cause optical encoders to fail. All of the HS45 electronics are potted, providing full protection against liquids. The outputs are protected against short circuits and wiring errors.

HS45 PART NUMBERS AND AVAILABLE OPTIONS

<table>
<thead>
<tr>
<th>Model</th>
<th>Bore Size</th>
<th>Left Output PPR</th>
<th>Right Output PPR</th>
<th>Line Driver</th>
<th>Connector Options</th>
<th>Tether</th>
<th>Channels</th>
<th>Modifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>HS45</td>
<td>Clamping</td>
<td>End of Shaft:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collar</td>
<td>Center Bolt</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mount</td>
<td>Mount</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U.S.</td>
<td>L- 16mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>C- 5/8"</td>
<td>(no taper)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>D- 3/4"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E- 7/8"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>F- 1"</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>G- 1 1/8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U- All US</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sizes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Clamping</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Collar</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>S- 16mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>T- 18mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V- 19mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>W- 20mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Y- 25mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Z- 30mm</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>A- Metric</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sizes</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Encoder Instructions

HS45

5/8-1 1/8" [16-30mm]

HOLLOW SHAFT

DESCRIPTION

- The Avtron Model HS45 operates down to zero speed and can be used for both control and instrumentation applications.
- **CAUTION**
 - Do not utilize HS45 in hazardous locations which require ATEX, UL, CUL, CSA, or other explosion protection certification.
 - Use XR models for hazardous applications.

- The Avtron Model HS45 is a heavy duty incremental encoder (also known as tachometer or rotary pulse generator).
- Its output is directly proportional to shaft position (pulse count) or speed (pulse rate). The HS45 operates down to zero speed and can be used for both control and instrumentation applications.

- **CAUTION**
 - Do not utilize HS45 in hazardous locations which require ATEX, UL, CUL, CSA, or other explosion protection certification. HS45 is not certified for hazardous locations. Use XR models for hazardous applications.

- When mounted to a machine shaft, the HS45 design eliminates the need for shaft couplings, adapter flanges, or accessory mounting faces. The high clamping-force collar holds the HS45 in place, even under severe vibration & shock. A high-performance composite shaft insert provides electrical isolation from motor shaft currents. The shaft insert permits models to fit a range of shaft sizes from 5/8" to 1 1/8" [16mm - 30mm]; additional sizes available upon request. An anti-rotation arm prevents housing rotation while allowing for shaft end float.

- The HS45 utilizes magnetoresistive sensors. This proven technology is ideal for rugged environments since it is immune to many contaminants that cause optical encoders to fail. All of the HS45 electronics are potted, providing full protection against liquids. The outputs are protected against short circuits and wiring errors.
ELECTRICAL SPECIFICATIONS

A. Operating Power (Vin)
 1. Volts.......................... 5-24 VDC in
 2. Current......................... 100mA, each output, plus cable load

B. Output Format
 1. 2Ø & Comp.................... A, A, B, B (differential line driver)

C. Signal Type..................... Incremental, Square Wave, 50 +/-10%
 Duty Cycle.

D. Direction Sensing O/A leads O/B for CW rotation as viewed
 from the back of the tach looking at the
drive end of the motor.

E. Transition Sep. 15% minimum

F. Frequency Range 0 to 165,000 Hz

G. PPR 8-5000

H. Line Driver Specs: See table

I. Connectors: See connector options on page 1

MECHANICAL

A. Shaft Inertia............... 1.59 lb-in-sec^2
B. Acceleration............... 5000 RPM/Sec. Max.
C. Speed: 5000 RPM Max (also see overspeed)
D. Weight: 10-12 lbs [4.5-5.5kg]
E. Vibration 20 Gs, 5-2000 Hz (any orientation)
F. Shock: 100 Gs, any orientation
G. Shaft Engagement (clamp style)
 5/8”-7/8” bore.................. 2” [51mm] min.
 16-20mm bore.................. 51mm min.
 1”- 1 1/8” bore............... 1.75” [45mm] min.
 25-30mm bore............... 45mm min.
 with overspeed switch........... 2.65° +/-0.05° [68mm +/-1.27mm]

ENVIRONMENTAL

Solid cast aluminum stator and rotor
Fully potted electronics, protected against oil and water spray
Operating Temperature: -40°C to +100°C.
(note for shaft codes C-F, S-Y, +85C or use option 500 = +100C)

MECHANICAL OVERSPEED SWITCH OPTION

A. Shaft Inertia............... +0.0018 lb-in-sec^2
B. Acceleration............... 3600 RPM/Sec. Max.
C. Speed: 1.25 x Overspeed set Max.
 Minimum trip speed: 700 RPM
 Maximum trip: 3600 RPM
 Accuracy +/- 4% of trip point
 Hysteresis: 40% of trip point

D. Weight: 2.55 lbs [1.16kg]
E. Vibration: 20 Gs, 5-2000 Hz (radial only)
F. Shock: 100G, any orientation
G. Electrical Contact (NO/NC Contact)
 1. 6A/230VAC
 2. 3A/380VAC
 3. 1A/125VDC
H. Operating Temperature:...... -40°C to +100°C.

Each HS45 has a two-phase output (A, B) 90° out of phase, with comple-ments (A, B), (A Quad B Output). A marker pulse with complement
(Z, Z) is also present.

The HS45 has a diagnostic package that includes Adaptive Electronics
and a Fault-Check output and red/green LED for local indication. With
this package, the HS45 can maintain itself, and provide an alarm if
there is a problem before the problem causes unscheduled downtime.

ADAPTIVE ELECTRONICS

A perfect duty cycle consists of a waveform whose “high” and “low”
conditions are of the same duration (50%/50%). It is possible over time
for the duty cycle and edge separation to change due to component
drift, temperature changes, or mechanical wear. The Adaptive Elec-
tronics extend the life of the HS45 by constantly monitoring and cor-
correcting duty cycle and edge separation over time.

FAULT-CHECK

If the Adaptive Electronics reach their adjustment limit, the LED will
turn red and Fault-Check alarm will notify the drive and operator of
an impending failure. This output can occur before a failure, allowing
steps to be taken to replace the unit before it causes unscheduled
downtime. Fault-Check annunciation is available as an “alarm” output
through the connector.

SAFETY

The HS45 is not considered as a safety device and is not suitable for
connection into a safety system. The mechanical overspeed switch
(option 6xx) is suitable for connection into safety systems.

CAUTION

Do not disassemble mechanical overspeed option. Doing so may modify
the overspeed set point or cause the switch to malfunction. If the factory seals are not
intact on the overspeed switch, do not use it—return to
the factory for service and calibration.

CAUTION

Be careful not to damage clamping fingers of hollow
shaft during handling. Do not tighten clamping collar
before installation onto motor shaft.
HS45 Remote Alarm

Applies to Model HS45 Encoders connector styles "H", "L", "P", "Q", "W", "Z", "4"

ALARM OUTPUT CONNECTION

Avtron HS45 encoders provide an alarm signal if maintenance is required under specific circumstances. Following are application examples provided to help install the alarm output.

Example 1. Alarm output using +V(OUT). +V(OUT) is equal to +V, the encoder power supply.

Single Ended Single Phase Wiring Applications

<table>
<thead>
<tr>
<th>Pinout</th>
<th>Specifications</th>
<th>Connected on 18" Cable</th>
</tr>
</thead>
<tbody>
<tr>
<td>1+</td>
<td>REFR, ØA–</td>
<td></td>
</tr>
<tr>
<td>1-</td>
<td>JREF, ØB–</td>
<td></td>
</tr>
<tr>
<td>2-</td>
<td>SHIFTER, ØB–</td>
<td></td>
</tr>
<tr>
<td>3-</td>
<td>K1, ØZ–</td>
<td></td>
</tr>
<tr>
<td>4-</td>
<td>E, F, G, H</td>
<td></td>
</tr>
<tr>
<td>5-</td>
<td>E, F, G, H</td>
<td></td>
</tr>
<tr>
<td>6-</td>
<td>E, F, G, H</td>
<td></td>
</tr>
<tr>
<td>7-</td>
<td>F, H, L</td>
<td></td>
</tr>
</tbody>
</table>

Differential Two Phase Wiring Applications

- **Not Recommended for Output Option**:
 - 8

Industrial Options

- 8 PIN M12
- 6 PIN MS
- 7 PIN MS
- 10 PIN MS
- 10 PIN MS
- 12 PIN M23

Channel Connectors

- ØZ, ØZ–
- ØB, ØB–
- ØA, ØA–

Notes:

- Avtron standard warranty applies. Copies available upon request.
- Specifications subject to change without notice.
<table>
<thead>
<tr>
<th>PIN</th>
<th>IN</th>
<th>OUT</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
<th>9</th>
<th>10</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>0A</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>D</td>
<td>ØA</td>
<td>ØB</td>
<td>ØZ</td>
</tr>
<tr>
<td>2</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>0A</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>D</td>
<td>ØA</td>
<td>ØB</td>
<td>ØZ</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>0A</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>D</td>
<td>ØA</td>
<td>ØB</td>
<td>ØZ</td>
</tr>
<tr>
<td>4</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>0A</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>D</td>
<td>ØA</td>
<td>ØB</td>
<td>ØZ</td>
</tr>
<tr>
<td>5</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>0A</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>D</td>
<td>ØA</td>
<td>ØB</td>
<td>ØZ</td>
</tr>
<tr>
<td>6</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>0A</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>D</td>
<td>ØA</td>
<td>ØB</td>
<td>ØZ</td>
</tr>
<tr>
<td>7</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>0A</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>D</td>
<td>ØA</td>
<td>ØB</td>
<td>ØZ</td>
</tr>
<tr>
<td>8</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>NC</td>
<td>0A</td>
<td>3</td>
<td>2</td>
<td>1</td>
<td>D</td>
<td>ØA</td>
<td>ØB</td>
<td>ØZ</td>
</tr>
</tbody>
</table>

- **120 - 380 VAC**
- **SAFETY SYSTEM**
- **MECHANICAL OVERSPEED SWITCH WIRING APPLICATIONS**

Specifications subject to change without notice.
Installation should be performed only by qualified personnel. Safety precautions must be taken to ensure machinery cannot rotate and all sources of power are removed during installation.

INSTALLATION

Refer to the back page of these instructions for outline and mounting dimensions.

Equipment needed for installation

Supplied:
- HS45 Encoder
- Shaft Sizing Insert for all clamp style models
- For 16mm center-bolt style ONLY: centering (tapered) ring

Optional:
- Anti-Rotation Arm Kit
- Thread Locker (blue)

Not Supplied:
- Open Wrenches
 - "G", "P", "T", "U"-Tether: 9mm, 10mm
- M5" T-handle hex wrenches or torque wrench with M5 bits (Torque wrench required for Center Bolt Mounting Style).
- Dial Indicator Gauge
- Caliper Gauge

The hollow shaft HS45 design eliminates the potential for coupling failures from misalignment, however, excessive housing movement (wobble) may cause undesirable vibrations and bearing damage. The higher the RPM, the more severe the vibration will be from housing movement. In a typical installation a housing movement of 0.007" [0.18mm] or less (as measured at the outside diameter of the main encoder body) will not have an adverse effect. For overspeed applications, TIR should be < 0.002" [0.05mm].

1. Disconnect power from equipment and encoder cable.
2. Use caliper gauge to verify motor shaft is proper diameter and within allowable tolerances: +0.000", -0.0005" [+0.00, -0.013mm].
3. Clean machine shaft of any dirt and remove any burrs.
4. Use dial indicator gauge to verify the motor shaft: Total Indicated Runout (TIR) < 0.002" [0.05mm].
5. Install the anti-rotation bracket tether to the face of the encoder using M6 Hex screws and lock washers, included with the tether. Tighten to 65 in-lbs [7.5n-m]
7. Test Fitting: carefully slide the encoder onto the shaft to verify fit. Ensure a minimum of 1/8" [2mm] between encoder and mounting surface. DO NOT FORCE. Encoder should slide on easily. If the encoder does not fit easily, remove it, verify shaft size, and check for burrs and shaft damage.

FOR CLAMP COLLAR MOUNTING STYLE:

6. Remove the rear cover from the HS45.
7a. For 17mm taper shaft mount: Carefully slide the encoder onto the shaft to verify fit. DO NOT FORCE. Encoder should slide on easily. If the encoder does not fit easily, remove it, verify shaft size, and check for burrs and shaft damage.
7b. For 16mm center bolt shaft mount: Slide the centering ring over the motor shaft. Carefully slide the encoder onto the shaft to verify fit. DO NOT FORCE. Encoder should slide on easily. If the encoder does not fit easily, remove it, verify shaft size, and check for burrs and shaft damage.
8. Insert center mounting screw (M6 provided) through the body of the encoder into the stub shaft tapped hole and tighten to 66 in-lbs [7.5n-m]
9a. Replace rear cover onto the HS45. Use a wrench on the external flats if necessary. Tighten the cover screws.
10a) For threaded rod tethers, adjust to proper length by selecting combinations of short and long piece as required and thread together for final length adjustment. Attach free end of the anti-rotation arm to the bracket tether using the shoulder bolt provided.
11) Secure free end of the anti-rotation bracket to frame using bolt or T-bolt provided. The bracket should be parallel to the encoder face, 90 degrees to the shaft to avoid encoder bearing damage. Use additional washers as needed to ensure the tether is parallel to the encoder face.
12) An M8 threaded hole is provided in the encoder shaft to permit an M8 jack bolt for removal

MODIFICATION

The HS45 can be modified in the field to easily adapt to new applications.

TO CHANGE ELECTRICAL CONNECTOR STYLE:

1. Remove electrical power and disconnect the mating plug.
2. Unscrew the (4) M5 screws (4mm hex).
3. Pull the connector header away from the encoder gently.
4. Disconnect the ribbon connector to the encoder body.
5. Connect the ribbon connector to the new connector header
6. Attach the new connector header to the encoder using the (4) M5 screws. Tighten to 30 in-lbs [3.4n-m]. Be sure the ribbon connector fits in the open pocket under the header and is not crushed or pinched by the connector header.
TO CHANGE BORE SIZE INSERT:

1. Remove electrical power.
2. Remove the encoder from any existing mounting.
3. Remove the rear encoder cover (if present) (4 screws are retained)
4. Remove the retaining snap-ring around the insert.
5. Remove the insert from the encoder bore. The insert should slide out easily. DO NOT hammer on the insert to remove it.
7. Reinstall the retaining snap ring over the insert.
8. Reinstall the rear encoder cover as required.

WIRING

CAUTION
Be sure to remove power before wiring the encoder. Be sure to ground the cable shield: It can be connected to case ground at the encoder, or grounded as the receiving device, but should not be grounded on both ends. See note below for Danaher/Northstar wiring.

Refer to the wiring diagrams for specific information on each option.
The AV45 can be wired for single phase or two phase, either with or without complements, with or without markers. For bidirectional operation, Phase A channel leads phase B channel for clockwise shaft rotation as viewed from the anti-drive or accessory end of the motor (AV45 mounting end).

CAUTION
Be sure to observe maximum current limits for mechanical over-speed switch option. Exceeding these limits can cause arcing and cause switch failure; this may result in property damage, injury or even death.

NOTE
Wiring option “G” provides a pinout compatible with Northstar™ encoders, with a cable shield connection on pin 10. Note that this option does not ground the shield; Avtron still recommends grounding the shield at the drive end of the cable for all wiring options.

CORRECTIVE ACTION FOR PHASE REVERSAL

1) Remove Power.
2) Exchange wires on cable, either at encoder cable end, or at speed controller end (but not both).
 a) Single Ended 2 Phase Wiring (see wiring diagram) Exchange A and B at the use end of the wires.
 b) Differential 2 Phase Wiring (see wiring diagram) Exchange either A with A– in the phase A pair OR B with B– in the phase B pair but NOT both.
3) Apply Power.
4) Verify encoder feedback is correct, using hand rotation of shaft, or jog mode of the speed controller.

Interconnecting cables specified in the wire selection chart are based on typical applications. Physical properties of cable such as abrasion, temperature, tensile strength, solvents, etc., are dictated by the specific application. General electrical requirements are: stranded copper, 22 through 16 AWG (Industrial EPIC connector type options can use 14 AWG), each wire pair individually shielded with braid or foil with drain wire, 0.05 µf of maximum total mutual or direct capacitance, outer sheath insulator. See specifications for maximum cable length. Stranded 22 AWG wire should not be used for cable runs greater than 61 meters. If 22 AWG is used with EPIC type connector options the wire ends should be tinned.

FAULT-CHECK
After power-up and the rotor position is checked by the sensor, the Fault-Check LED will turn green.

If the adaptive electronics reach their adjustment limit for any reason, the Fault-Check alarm and LED will notify the drive and operator of an impending failure. The LED will turn red if the Adaptive Electronics reach their adjustment limit. This output occurs before an actual failure, allowing steps to be taken to replace the unit before it causes unscheduled downtime. Fault-Check annunciation is available as an “alarm” output through the connector and as an integral LED.

TROUBLESHOOTING
If the drive indicates a loss of encoder/tach fault and the HS45 fault-check LED is not illuminated, check the encoder power supply. If power is present, check polarity; one indicator of reversed power supply is that all outputs will be high at the same time. If the drive indicates encoder fault, but the LED shows GREEN, then check the wiring between the drive and the encoder. If the wiring appears correct and in good shape, test the wiring by replacing the HS45. If the new unit shows GREEN, and the drive still shows encoder loss/tach fault, then the wiring is faulty and should be repaired or replaced.

If the alarm output and/or LED indicate a fault (RED) on a properly mounted HS45 and the rotor is properly located, replace the HS45.

An oscilloscope can also be used to verify proper output of the HS45 encoder at the encoder connector itself and at the drive/controller cabinet. If the outputs show large variations in the signals at steady speed (jitter or “accordion effect”, see figure 5), replace any magnetized material nearby with non-magnetic material (aluminum, stainless) (shafts, etc). If variations persist, consider replacing with super-shielded models, option -004.
TETHER OPTION: D,F

TETHER OPTIONS: G, P, T, U

±1.50 [38mm] OFFSET FOR 12 IN. [305MM] ROD END CENTERS

2.76 [70mm] MINIMUM DISTANCE

0.28 [7mm] MAX. THICKNESS FOR THRU HOLE MOUNTING

±1.50 [38mm] OFFSET FOR 12 IN. [305MM] ROD END CENTERS

ATTACH ARM TO ENCODER USING M6 SCREWS. SELECT THE SCREW HOLES THAT PROVIDE THE DESIRED ORIENTATION. THE ROD END ATTACHED TO THE BRACKET IS PERMANENTLY ASSEMBLED AND SHOULD NOT BE REMOVED.

SELECT THE APPROPRIATE THREADED ROD LENGTHS (ITEMS 7, 10, 11). USE COUPLING NUTS (ITEMS 8, 9) TO JOIN RODS.

TWO M6 SPLIT LOCKWASHERS (ITEM 3) AND NUTS (ITEM 12) ARE PROVIDED FOR THROUGH HOLE INSTALLATION. A LOCKWASHER IS NEEDED ON EACH SIDE OF THE THROUGH HOLE.

THE FREE END MAY BE OFFSET BY ±1.50 INCHES [38mm] WITH THE ROD AT 12 IN. [305mm] BETWEEN CENTERS. IF THE O.A.L. OF THE ARM IS LENGTHENED OR SHORTENED, THEN THE ALLOWABLE OFFSET IS CHANGED BY THE SAME PROPORTION. MOUNT FREE END OF ANTIROTATION ARM AT 90°±15° ANGLE.

CUSTOMER ATTACHMENT POINT

90° ± 15°

ATTACH ARM TO ENCODER USING M6 SCREWS. SELECT THE SCREW HOLES THAT PROVIDE THE DESIRED ORIENTATION. THE ROD END ATTACHED TO THE BRACKET IS PERMANENTLY ASSEMBLED AND SHOULD NOT BE REMOVED.

SELECT THE APPROPRIATE THREADED ROD LENGTHS (ITEMS 7, 10, 11). USE COUPLING NUTS (ITEMS 8, 9) TO JOIN RODS.

TWO M6 SPLIT LOCKWASHERS (ITEM 3) AND NUTS (ITEM 12) ARE PROVIDED FOR THROUGH HOLE INSTALLATION. A LOCKWASHER IS NEEDED ON EACH SIDE OF THE THROUGH HOLE.

THE FREE END MAY BE OFFSET BY ±1.50 INCHES [38mm] WITH THE ROD AT 12 IN. [305mm] BETWEEN CENTERS. IF THE O.A.L. OF THE ARM IS LENGTHENED OR SHORTENED, THEN THE ALLOWABLE OFFSET IS CHANGED BY THE SAME PROPORTION. MOUNT FREE END OF ANTIROTATION ARM AT 90°±15° ANGLE.
CLAMP STYLE
SHOWN: SINGLE OUTPUT, 1" BORE, INDUSTRIAL CONNECTOR, 4.5" C-FACE TETHER

SHAFT ENGAGEMENT:
Minimum:
- 5/8"-7/8" bore 2" [51mm]
- 16-20mm bore 51mm
- 1"- 1 1/8" bore 1.75" [45mm]
- 25-30mm bore 45mm
- with overspeed switch 2.65" [68mm]

Maximum (With Cover or Overspeed):
- All bore sizes 2.70" [68.6mm]

Features and specifications subject to change without notice.
Avtron standard warranty applies. All dimensions are in inches [mm].
Features and specifications subject to change without notice.
Avtron standard warranty applies. All dimensions are in inches [mm].
16mm CENTER BOLT STYLE
SHOWN: SINGLE OUTPUT, CONDUIT BOX, ANTI-ROTATION ARM OPTION “P”

SHAFT ENGAGEMENT:
Minimum: 1.73” [44mm]
Maximum: 2.09” [53mm]

Features and specifications subject to change without notice.
Avtron standard warranty applies. All dimensions are in inches [mm].
17mm CENTER BOLT STYLE
SHOWN: SINGLE OUTPUT, M23 CONNECTOR, ANTI-ROTATION ARM OPTION “P”

SHAFT ENGAGEMENT:
20mm +/-0.1mm
Shaft shall be 17mm diameter with 10:1 taper

Features and specifications subject to change without notice. Avtron standard warranty applies. All dimensions are in inches [mm].
HS45 WITH OVERSPEED SWITCH

SHOWN: 16MM CENTER-BOLT MOUNT, SINGLE OUTPUT, M23 INDUSTRIAL CONNECTOR

SHAFT ENGAGEMENT:

Clamp Style:
- Minimum: 2.65" [68mm]
- Maximum: 2.70" [68.6mm]

17mm Center-Bolt Style
- 20mm +/-0.1mm
- Shaft shall be 17mm diameter with 10:1 taper

16mm Center-Bolt Style
- Minimum: 1.73" [44mm]
- Maximum: 2.09" [53mm]

Features and specifications subject to change without notice.
Avtron standard warranty applies. All dimensions are in inches [mm].